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ABSTRACT 

Numerical techniques for the integration of the Schrodinger equation in imaginary 
time are investigated. Because the spatial dependence of the solution in the limit of 
large imaginary time is that of the ground state of the Hamiltonian, the method can 
be applied to bound states of quantum-mechanical three-body systems. Knowledge 
of the analytic dependence of the asymptotic form of the wavefunction on the trial 
eigenvalue is not required. In this paper, the first of a series, we have confined our 
attention to the problems arising from the imaginary time integration and reserve 
for a later date a discussion of the problems that are due to a multidimensional spa- 
tial grid. 

I. INTRODUCTION 

In this paper we wish to discuss in detail the virtues and problems associated 
with the causal integration of the time-dependent Schrodinger equation in imagi- 
nary time. The reason for the interest in this technique is that the latest generation 
of computers has begun to make practical the exact solution of the ground state 
of a quantum mechanical three-body system with this method. 

In recent years the three-body problem, i.e., three particles obeying the Schro- 
dinger equation and interacting with each other via spatially varying potentials, 
has been the target of a massive assault by the weaponry of modern theoretical 
physics. Several quite elegant treatments of the general problem have appeared; 
the reduction of the Lippmann-Schwinger equation to nonsingular, semitractable 

1 This work was performed under the auspices of U. S. Army Atomic Energy Commission. 
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form by Fadeev and his school [I], [2] and the application of nonlocal separable 
potentials by Mitra et al. [3]. In addition, there have been a number of monu- 
mental calculations, through variational methods, of the atomic-He ground- 
state energy [4] and the trinucleon [5] (3H and 3He) binding energies, the latter 
none too successful. All these studies have produced impressive new insights 
into the nature and difficulties of the problem. Their application to truly realistic 
problems, however, must await the conquest of a large number of formidable 
obstacles. 

Another line of attack, i.e., the numerical imaginary time integration of the 
Schrodinger equation has as yet received only scant attention [6]. Although the 
procedure is quite straightforward and promises to generate three-body ground 
state energies and wave functions with no approximations, its use for even the 
relatively simpler atomic problems has become feasible only with the present 
generation of computers. 

The three-body problem, when all trivial degrees of freedom, i.e., the center- 
of-mass coordinates and the Euler angles of rotation, have been removed [7], 
still contains three spatial variables. Since it is our intention in this paper to deal 
primarily with the problems arising from the time integration we shall focus our 
attention on the simpler two-body problem with only one variable, the coordinate 
in the reduced radial Schrodinger equation for two bodies interacting via a cen- 
tral potential, bearing in mind always the more complex problem, whose solu- 
tion is the purpose of this effort. 

II. FORMAL CONSIDERATIONS 

The Schriidinger equation (with zi = 1) is 

HY(r, t) = idY(r, t)/& (1) 

where r represents all the spatial coordinates. The time-independent Hamiltonian 
H possesses a complete set of orthonormal eigenfunction pi,(r) with corresponding 
eigenvalues .s, , the lowest being Q. We assume that H has at least one well- 
defined bound state whose energy is a0 < 0 and which differs from the next- 
lowest energy e1 by a finite amount. [If p0 is a degenerate state due to a symmetry 
in some degree of freedom, one can extract that variable from the problem and 
consider Eq. (1) with the appropriate H in the reduced space.] 

Let 
W, 0) = C 4s,,W (2) 
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be the solution of Eq. (1) at time t = 0; then 
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(3) 

satisfies this equation at any other time t. If we let 

it = T, 

Eq. (1) becomes 

where 

and 

Hy(r, t) = - dy(r, t)/h 

y(r, z) = Y(r, - it) = P(r, t) 

(4) 

y(r, z> = Z a, exp(--e,z)yh(r). il 
(5) 

Clearly for large positive values oft, the series on the right-hand side is dominated 
by the n = 0 term. In fact. 

y(r, 4 - T--fDo a0 ew(--04 voW [I + 0 (ew - (Q - E~)~I. (6) 

Thus, provided y(r, 0) is chosen such that a, # 0, this procedure generates a 
function with the spatial dependence of the ground-state wavefunction of H. 
Since the ground-state wavefunction has no nodes, one can be sure that the 
starting function y(r, 0) will have a nonvanishing projection on the ground state 
by choosing it to be nodeless, for example. 

The question of how to recognize when -c is sufficiently large so as to satisfy 
Eq. (6) is a delicate one. Clearly a sufficient condition is that 

y(r, z + dt)/y(r, z) = exp(-- &o 6~) (7) 

be independent of position. It is usually possible to satisfy this condition over an 
acceptable range of r and thereby end the calculation. We shall, however, have 
more to say on this point later. 

The problem is then the integration of Eq. (4), starting with a conveniently 
chosen starting function y(r, 0), and using equation (4) to generate y(r, t) for a 
sufficiently large that condition (7) obtain. The Hamiltonian is of the usual type 

H=T+ v, 

with T the kinetic energy, containing second-order spatial derivatives, and V a 
local potential. Equation (4) differs from the diffusion equation by the presence 
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of the potential V. In addition, in this problem we are interested in the function 
y(r, T) only in the limit of large t; the t-development per se is of no interest. 

The integration proceeds in time steps &, whereby an alternative form of Eq. 
(4) is 

y(r, t + 6~) = exp(- 6tH) y(r, z). (8) 

We shall discuss the methods of solution of (4) and (8) symbolically denoted by 

explicit time integration : y(r, -c + bt) = [I - GtH]y(r, t); 

implicit time integration: [l + GtH]y(r, r + 6~) =Y)(Y, z); 

Crank-Nicholson method: [I + (@t)H]y(r, t + &) = [I - (@r)H]y(~, z). 

These methods answer all the important questions encountered in the time inte- 
gration of Eq. (4), and we shall confine our discussion here to these methods. 

III. INTEGRATION METHODS 

The imaginary time-dependent reduced radial Schrodinger equation for two 
particles of angular momentum I interacting through a Coulomb potential is, 
in atomic units, 

E -32 2 +w+ 1) 1 -dY(X, r> --- 3x2 x x2 ___ Ycv)=-~’ Ojx<oo. (9) 

The boundary conditions require that 

and 
Y(O, z) = 0 (10) 

ye, t> - 0 (11) z+m 

for bound states. The exact ground-state energy and wavefunction for fixed I are 

&g = - l/(1 + 1)2, 

y&XT) = Nlxz+l exp[- x/(l + I)] 

where Nr is the normalization constant. Since the infinite range of x makes it 
difficult to apply Condition (ll), we shall solve this equation in the restricted 
space 0 _( z < 1 with 

z=/!?P/(l i@“), /9, s>o. w 
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By chasing a uniform mesh in z space and varying B and s we may vary the nature 
of the non-uniform mesh in x space thus exploring, in greater or lesser fine detail, 
the region of small x. The differential equation in z is then, for s = 1, 

[ 
- /I”(1 - z)” & + 2/92(1 - z)” ; - ; Q+! + %$A (!$)plp(z), 

with 
(13) 

y(z = 0, t) = y(z = 1, T) = 0. (14) 

Let the interval 0 _( z < 1 be subdivided into n equal intervals of length 
AZ = l/n and let 

zj = jdz, j = 0, 1, . . . n 
and 

Y(Zj, 4 3 ylj(t). 

The spatial derivatives to second order in AZ are 

aY(zj9 r) = Yj+lCz) - Yj-lCt> 
aZ 242 ’ 

d2Y(zjz) ---zz Yj+l(t) - &j(t) + yj-l(t) 
i9Z2 (AZ)2 . 

Equation (15b) is replaced by the difference equations 

T Ifiklyk(Z) = -ari(z) , 

which is equivalent to 

yj(z + 8~) = C @w(-Mljk ok 
k 

where A is the tridiagonal matrix 

(154 

(15b) 

(16) 

(17) 

irjk SE! 
-";':zi 'J')" [Cl - Zj+&+,,k + (1 - zj-l)dj-l,k] 

+ 
+y (+)‘I djk. (18) 

The specification of the differencing scheme remains incomplete until some 
prescription for evaluating the quantity 6’yj(t)/br is offered. In fact, the choice 
of approximation for this time derivative is not to be made lightly since it will 
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strongly determine the character of the calculation, and, given the requirements 
of numerical stability, make the difference between a feasible and nonfeasible 
approach to any but the most trivial of problems. 

Before specifying ayj(t)/at and thereby determining which of several calcula- 
tional methods will be employed, we should like to return briefly to the problem 
of identifying how large a value oft is large enough, and the to associated problem 
of computing the energy. 

The ground-state wavefunction is very small for large x due to the spatial 
exponential decay, and is relatively large for x small. Higher energy states, on 
the other hand, are relatively large at large X. Hence, one expects the time-develop- 
ed function y(x, Z) to first begin to resemble the exact ground state at small dis- 
tances and only much later at large distances. In the computations below we have 
computed the exponential growth rate in T and thus the energy from Eq. (7) 
at the value of x for which y(x, t) assumes its maximum value. This is quite suf- 
ficient since, when the energy calculated from successive values of y(x, r) at this 
x is no longer changing, the spatial dependence of the wavefunction itself has 
also stabilized over the entire range. 

Finally, we again emphasize that we are interested in the function y(x, Z) only 
for asymptotic values of t. Hence, we want integration methods which allow the 
largest possible time steps 6z and the shortest possible computation time. We 
also wish to keep the number of spatial net points at the minimum required. 
Since the starting function is irrelevant, we have adopted the following procedure : 
the calculation is begun with a small number of net points iz and with a convenient 
initial function y(x, 0). When the energy co has stabilized, the number of net points 
is doubled and the calculation begun again, the new starting function being prov- 
ided by the y(x, t) just generated at the old mesh points and the values of y(x, z) 
at the new points being calculated by interpolation from the eigenvalue equation, 

T &tYkW = &“YAZ). (19) 

This is possible since B is tridiagonal. The new starting function is already very 
close to the exact ground state; one then produces a much more accurate wave- 
function very rapidly. 

IV. NUMERICAL RESULTS 

A. Explicit Time Integration 

In Eq. (16) if dlyi(z)/a z is replaced by [luj(z + 6~) - luj(t)]/st, we obtain 
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(20) 

The function at later time is given directly in terms of that at earlier time. This 
procedure is quite straightforward and immediately applicable to problems with 
more than one spatial variable. However, as is well known [8], numerical proce- 
dures for explicit integration are generally only conditionally stable. For an 
equation of the form we are using we may guarantee that the error introduced 
by using finite differences remains bounded if 

262/(42)2 < 1. (21) 

This is not a necessary condition in this problem, however, since in Eq. (13) 
the coefficient of the second derivative is not bounded away from zero [9]. In 
fact, we have obtained stable solutions of (1)3 using the explicit scheme of Eq. 
(20) for 

26t/(dz)2 > 2. 

In particular, with 10 net points, dz = 0.1, and a time step 6t = 0.013, after 
1000 time steps, beginning with a starting function 

y(z, 0) = z(1 - z)5, (22) 

Eq. (20) yields the results given in Column B of Table I for 1= 0. The exact wave- 
function is given in Column A. These results are surprisingly good. The energy 
as computed from successive time steps is 

q, = - 1.00948, 

correct to 1%. [Some appreciation of how the energy value, as calculated from 
(7), settles down as a function of the number of time steps is shown in Fig. 1. 
The behavior of the wavefunction is shown in Fig. 2.1 The mesh width was then 
halved and the interpolated values of the wavefunction obtained from the eigen- 
value equation. To maintain stability, a new 6z = .OOl was chosen. When the 
explicit integration was carried 1500 time steps further, an energy of 

&() = - 1.00174 

was obtained. The wavefunction that was generated is presented in Table 1, 
Column C. It seems evident, therefore, that for one-dimensional problems explicit 
time integration is both feasible and gives quite satisfactory results. In order to 
satisfy the stability condition, however, we must use small time steps. This dif- 
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fkulty is aggravated even further with the introduction of a sufficientiy fine spa- 
tial mesh to define the wavefunction well. The net result is an inordinately large 
number of calculations. 
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FIG. 1. The energy calculated from Eq. (7) as a function of the number of time steps for 
the explicit-integration method described. 
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FIG. 2. The function v(x, NC%) for several N using the explicit-integration method described. 
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TABLE 1 

THE SPATIAL DEPENDENCE OF &x, t --f co) FOR A VARIETY OF NUMERICAL INTEGRATION METHODSO 

X A B C D 

0.0526 
0.1111 
0.1765 
0.2500 
0.3333 
0.4286 
0.5385 
0.6667 
0.8182 
1.0000 
1 .2222 
1.5ooo 
1.8571 
2.3333 
3.0000 
4.0000 
5.6667 

0.1357 
0.2703 
0.4021 
0.5293 
0.6493 
0.7590 
0.8543 
0.9304 
0.9813 
1.0000 
0.9786 
0.9098 
0.7882 
0.6151 
0.4060 
0.1992 
0.5329 x IO-’ 

- 
0.2700 

- 

0.5288 
- 

0.7586 
- 

0.9304 
- 

1.0000 
- 

0.9076 
- 

0.6037 
- 

0.1737 
- 

0.1358 
0.2703 
0.4022 
0.5294 
0.6945 
0.7592 
0.8546 
0.9307 
0.9815 
1 .oOOo 
0.9782 
0.9085 
0.7853 
0.6099 
0.3980 
0.1897 
0.4847 x 10-l 

- 
0.2700 

- 

0.5288 
- 

0.7586 
- 

0.9304 
- 

1.0000 
- 

0.9076 
- 

0.6037 
- 

0.1737 
- 

0.1357 
0.2702 
0.4020 
0.5291 
0.6492 
0.7588 
0.8542 
0.9304 
0.9813 
1 .oOOo 
0.9785 
0.9093 
0.7868 
0.6123 
0.4014 
0.1934 
0.4990 x 10-r 

9.0000 0.3043 x 1O-2 0.4265 x 1O-z 0.3629 x 1O-2 0.4268 x lo-* 0.3474 x 10-l 

19.0000 0.2894 x lo-@ - 0.7667 x 1O-p - 0.1922 x lo-’ 

E 

a Column headings are as follows: 
A - analytic solution; 
B - explicit integration method; 
C - interpolated explicit integration method; 
D - implicit and Crank-Nicholson integration methods; 
E - interpolated implicit and Crank-Nicholson integration methods. 

B. Implicit Time Integration 

In Eq. W-9, ~Y&W t is taken to be [yj(t) - yj(z - 6r)], then we obtain 

; vj, + ~~HjklYkW = Yj(t - 67). (23) 

This forms a set of linear algebraic equations which may be easily inverted, due 
to the tridiagonal nature of & to give yj(t) (See Appendix). This method is 
unconditionally stable and since we are interested in yj(z) only for large z we 
may use much larger time steps, and consequently perform fewer calculations. 
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With 10 mesh points, this equation was integrated with ht :: 0.25. The energy 
was constant to one part in IO6 after 50 time steps. The energy obtained is given 
in Table II, and the wavefunction in Table I, Column D. It will be noted that, 
although the wavefunction is quite accurate, the energy is not. This is due to the 
large time step, and the consequent inaccuracy of determining the energy. The 
value of the energy can, however, be determined much more accurately by simply 
generating one more time step with a much smaller 6t. 

TABLE 2 

ENERGY OF THE GROUND STATE OF THE I = 0 COULOMB HAMILTONIAN AS ARRIVED AT BY A VARIETY 
OF NUMERICAL INTEGRATION TECHNIQUES 

Method 6-c n N Gl 

Explicit 0.013 10 1000 -1.00948 

Explicit (interpolated) 0.001 20 1500 -1.00174 
Implicit 0.25 10 50 -1.17231 

Crank-Nicholson 0.25 10 50 -1.02166 

Implicit (interpolated) 0.1 20 100 -1.05812 

Crank-Nicholson (interpolated) 0.1 20 100 -1.00491 

C. Crank-Nicholson Method 

A considerably more accurate t-integration can also be obtained by the Crank-- 
Nicholson method, in which d?+@z is written as [y&t + 6~) - yj(t)]/Bz and 
the left-hand side of Eq. (16) is taken as the arithmetic mean of its value at time 
z + 6t and t. Equation (16) then becomes 

After evaluating the right-hand side, one then inverts these equations in the same 
manner employed in the fully implicit scheme above. This method is also un- 
conditionally stable, allowing larger 6z, but in this case the error is of order (BT)~ 
rather than of order 6~. For a lo-point grid and 6z = 0.25, for example, the cal- 
culated wavefunction is identical with that determined above and tabulated in 
Table I, Column D. A considerably better value for the energy is obtained as is 
indicated in Table II. 
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To improve the wavefunction, the fully implicit and Crank-Nicholson cal- 
culations were then continued, after suitable interpolation on a mesh of 20 points, 
with a time step 6t = 0.1. Again the wavefunctions were identical after 100 more 
time steps and are presented in Column E, Table I, with energies as indicated 
in Table II. Obviously, implicit time integration, especially in the Crank-Nichol- 
son form, is a very powerful method of generating wavefunctions and energies, 
being both rapid and accurate, at least when applied to problems in one spatial 
dimension. As seen in the Appendix, however, its generalization to several di- 
mensions is quite formidable. 

Since all three methods discussed are in varying degree accurate, the choice 
of a particular method rests for the most part on its computational convenience. 
Table I indicates, in fact, that in all cases the wavefunction is given very well up 
to the region of its maximum, and then deteriorates badly for large X. This is, 
of course, due to the uniform mesh in the z-space producing a very crude mesh 
for large x. This may be improved simply by using more mesh points. However, 
as one uses more mesh points one must, for the explicit method, rapidly decrease 
the size of the time step. The implicit method does not suffer from this difficulty 
in one dimension. It is shown, however, in the Appendix that for three dimensions 
the computation time per time step is greatly increased. It would be preferable, 
it seems, to use this method to determine a good wavefunction at a small number 
of points, from them determine a good energy value, and use this information to 
then solve the time-independent Schrodinger equation for the wavefunction on a 
much more finely divided space. 

V. SCATTERING STATES 

If the Hamiltonian does not possess a bound state, one might then hope to 
extract information, for example, the scattering length, about the zero-energy 
scattering state via the above procedure. This, in fact, cannot be done, for two 
reasons. First, the zero-energy state is not isolated, but lies at the bottom of a 
continuum of eigenstates, so that the correction term in Eq. (6) is never negligible. 
Second, and more important, in any method of time integration one must know 
a priori the boundary values at x = 0 and x ---f co. However, the latter is precisely 
what one wishes to calculate. If we prescribe a value for x + co, we are then 
perforce dealing with some superposition of eigenstates whose only requirement 
is that it satisfy that boundary value. Thus, it appears that imaginary time inte- 
gration is not a useful procedure for scattering problems. 
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VI. DISCUSSION 

The method of imaginary time integration is seen to be capable of generating 
ground-state wavefunctions in one-dimensional problems. Although we have 
presented for illustration only the results for a Coulomb potential, the method 
clearly presents no difficulty in the treatment of more complicated potentials, and, 
in fact, has successfully been applied to the Yukawa and Lennard-Jones poten- 
tials as well as to higher angular momentum values in the Coulomb potential. 
Its real application will be found, however, in three-body problems with three 
spatial variables. It is then possible to direct the three integration prescriptions 
described above to this system, and at present the explicit form is being program- 
med. In addition to the methods we have discussed there are other possible inte- 
gration prescriptions which may be used. For example, we note that 

exp( - 6zH) = exp( - 6t(T + V) = exp( - &3) exp( - 6~ v) + corrections. 

One could then apply the various methods to each factor. In problems of several 
dimensions a judicious choice of coordinates would allow one to use implicit 
integration while bypassing the storage difficulties noted in the Appendix. While 
these methods have not been discussed here, since it was our attention to concen- 
trate on problems of the time development, it is clear that the spatial operator 
in three dimensions must be handled cleverly. A straightforward generalization 
of the one-dimensional implicit scheme is not practical. To indicate a possible 
solution, we shall simply observe that the form of the equations to be inverted 
in the three-dimensional case can be shown to be, in a suitable coordinate system, 

where the T’s involve spatial differential operators and the V is multiplicative. 
To first order in 6 this is equivalent to 

The three-body problem thus becomes a sequence of four one-dimensional prob- 
lems. This then constitutes a vast simplification over the straightforward generali- 
zation of the methods presented here for the two-body problem, and to the best 
of our knowledge, over any existing calculational approach to the three-body 
problem. Approximations of this and similar types are still being studied. 

One may also consider using these methods to construct the wavefunctions of 
excited bound states. If one has produced the ground state of the Hamiltonian, 
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one can then project it out of the initial function y(r, 0) so that a, = 0. One then 
would in analogous fashion integrate equation (4), whose solution would tend 
in the limit of large T, to the first excited state. There are difficulties associated 
with this procedure, however, since integration errors will introduce components 
of the ground state into the time-developed function. These can in turn build up 
and swamp the excited state being sought. This question is also under active in- 
vestigation. 

A third aspect of this general problem is that of scattering states. While it is 
not possible to use imaginary time integration here, one can apply these integra- 
tion methods to the Schrodinger equation directly, in real time. Some success 
has been achieved and we shall report on these efforts in the near future. 
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APPENDIX: SOLUTION OF IMPLICIT EQUATIONS FOR ONE- AND SEVERAL-VARIABLE 

PROBLEMS 

The solution of the algebraic equations resulting from an implicit differencing 
scheme is well known [lo], and is reproduced here for the sake of completeness. 
With one spatial variable, the equations are of the form 

with 

Ajyj-1 + Bjyj $ Cjyj+l = Dj 7 j = 0, 1, 2, . . . n, (AlI 

yo = yn = 0. 

The arrays Aj, Bj, Cj, and Dj are known, and D, = D, = 0. In order to solve 
the set of equations (Al), we assume 

cjYj+l = pj(gj - Yj>- 642) 

Substitution into Eq. (Al) then gives the recurrence relations 

AjCj-1 
Pj = Bj - T; sj = 

Dj - Ajgj-1 

p3 ’ 
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From (A2), 

Since 

Yn-1 = &?a-1; Yj = sj - cjYj+llpj~ 

yo = 0, 

P, = B,; g, = W’,. 

C-44) 

(A51 

Equations (A3)-(A5) constitute a solution to Eq. (Al). Notice that the array 
Pj is a constant throughout the time integration. One must then keep this array 
of n - 1 numbers in addition to the gj’s, Di’s, and vj’s. 

If threre are several spatial variables, e.g., two dimensions, the corresponding 
Eq. (Al’) is (we assume the differential equation to contain no mixed derivatives, 
although this is not necessary) 

with 
wio = Win, = Yoj = Yn,,j - -0 

If we now consider the arrays yij, and Dij for given i to be the elements of 
column vectors, 

Yi = 

and take the matrices 

-Yio - -Di, - 

- ; Di = 

-Yin,- - Di?l, _ 

then Eq. (Al’) becomes 

di Yidl + .QP !Pi + 29 Yj+l = 9j. 

The solution is then given by (A3)-(A5) withg, and Pi as matrices. In particular, 
only P;l would have to be stored throughout the problem, but since there are 
n - 1 matrices this would total (n - 1)3 would increase considerably, requiring 
the storage of an astronomical number of numbers. 
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